
luaexts Documentation
Release 1.0.0

Kurt Hutchinson

May 12, 2016

User Guide

1 Overview 1
1.1 Getting started . 1

2 API 5
2.1 luaexts . 5
2.2 dbgeng . 8

3 Indices and tables 11

Python Module Index 13

i

ii

CHAPTER 1

Overview

Luaexts is an extension for Windbg (and the other dbgeng-based debuggers) that provides access to the dbgeng COM
API from Lua. It also implements a lightweight framework for writing extensions in Lua.

Project source: https://bitbucket.org/kbhutchinson/luaexts/
Project documentation: https://luaexts.readthedocs.io/

1.1 Getting started

• Download luaexts-x86.zip and/or luaexts-x64.zip, depending on your debugger’s bitness, and unpack into your
.extpath.

• Within Windbg, run the following command: .load luaexts

• To verify that the extension loaded correctly, run the following command:

!lua say('success')

The growing list of supported dbgeng API functions can be accessed through the global table dbgeng. The table is
split up into sub-tables matching the organization of the dbgeng API itself. So the functions from the IDebugSymbols
interface (as well as IDebugSymbols2, etc) can be found in the dbgeng.symbols table.

As an example, here’s how to call the IDebugSymbols::GetSymbolTypeId function, use the return values to call the
IDebugSymbols::GetTypeName function, and then print the type name of a variable named foo that exists in the current
scope:

!lua local module, typeid = dbgeng.symbols.get_symbol_type_id('foo') say(dbgeng.symbols.get_type_name(module, typeid))

or without the temporary variables:

!lua say(dbgeng.symbols.get_type_name(dbgeng.symbols.get_symbol_type_id('foo')))

Small side note: A global function called say() is available that takes the place of Lua’s normal print() function:
it prints whatever is given to it and appends a newline. The print() function has been overridden to output without
a newline.

1.1.1 Building

The dbgeng headers and libs, required to build luaexts, are not included in this repository because I’m unsure of their
redistribution license. So to build luaexts, you’ll need to do the following:

• Clone this repository.

1

https://msdn.microsoft.com/en-us/library/ff551063
https://msdn.microsoft.com/en-us/library/ff551059
https://msdn.microsoft.com/en-us/library/ff551059
http://www.lua.org
https://bitbucket.org/kbhutchinson/luaexts/
https://luaexts.readthedocs.io/
https://bitbucket.org/kbhutchinson/luaexts/downloads/luaexts-x86.zip
https://bitbucket.org/kbhutchinson/luaexts/downloads/luaexts-x64.zip
https://msdn.microsoft.com/en-us/library/ff563047
https://msdn.microsoft.com/en-us/library/ff550856
https://msdn.microsoft.com/en-us/library/ff549173
https://msdn.microsoft.com/en-us/library/ff549408

luaexts Documentation, Release 1.0.0

• Retrieve the dbgeng headers and libs.

– Once you have Windbg installed, the headers can be found in <install-dir>\Debuggers\inc and
the libs in <install-dir>\Debuggers\lib. Copy the headers to luaexts\inc and the libs to
the appropriate platform directory under luaexts\lib.

• Build luaexts.sln with Visual Studio.

• Binaries will be placed in directories under luaexts\bin.

Remember when building locally that, in addition to luaexts.dll, you also need the contents of
luaexts\src\luaexts\lua copied to your Windbg extension path, next to the DLL or in a luaexts directory
next to the DLL.

1.1.2 General usage

Using the facilities provided by luaexts is usually done at the debugger’s command prompt by entering extension
commands, or by writing Lua scripts and running them. This section will discuss the commands that drive these
interactions.

The !lua command

The primary interface point for using luaexts is the !lua command, which consumes the rest of the command line as
a chunk of Lua code, and simply runs it. Quotation marks surrounding the Lua code are not required, as the dbgeng
command parser will automatically consume all text until the next semicolon, which is the debugger’s command-
separation marker. If a semicolon is needed within the Lua code itself, then enclosing quotation marks are required,
to prevent the dbgeng command parser from interpreting the chunk as multiple dbgeng commands. Fortunately,
semicolons as statement-termination markers are optional in Lua syntax, so they are needed very rarely.

Each !lua command runs as a separate Lua chunk. This means that variables declared as local will be in scope
only during the execution of one command. Variables assigned to, but not declared as local, will become global
variables, available across all subsequent chunks run by luaexts. This can be useful, but care must be taken, because
the memory being used by data structures that are pointed to by global variables cannot be freed by the Lua garbage
collector as long as they are alive. Assigning nil to a global variable will remove the reference to the data the variable
was pointing to, at which point the data will become a candidate for garbage collection.

Lua’s print() function, which normally outputs to stdout, has been replaced by a function that directs output to the
debugger command window. Another slight change is that usually Lua’s print() will append a newline, but the
print() provided by luaexts does not append a newline, in order to provide more control over exact text output.
Instead a global say() function exists that automatically appends a newline.

As an example, here’s how to call the IDebugSymbols::GetSymbolTypeId function, use the return values to call the
IDebugSymbols::GetTypeName function, and then print the type name of a variable named foo that exists in the current
scope:

!lua local module, typeid = dbgeng.symbols.get_symbol_type_id('foo') say(dbgeng.symbols.get_type_name(module, typeid))

dofile() for running scripts

Although the !lua command provides the full expressiveness of Lua, it can be tedious to compose complicated
code chunks at the debugger command line. We can take advantage of built-in Lua functionality to ease the pain.
Lua provides a dofile() function that takes a file path, loads the file as a Lua code chunk, and runs it. Like the
scoping of !lua chunks, variables declared as localwithin the file will be scoped to the file’s chunk, while variables
assigned to but not declared local will become global and available to any subsequent chunks run by luaexts.

2 Chapter 1. Overview

https://msdn.microsoft.com/en-us/library/ff551063
https://bitbucket.org/kbhutchinson/luaexts/src/tip/src/luaexts/lua
https://msdn.microsoft.com/en-us/library/ff549173
https://msdn.microsoft.com/en-us/library/ff549408

luaexts Documentation, Release 1.0.0

Developing a script file can then be easily done by opening the file in your favorite text editor, making changes, and
then running !lua dofile(’path\to\script.lua’) from the debugger command line to test each change.
(Protip: In Windbg, the previous command can be retrieved from the command history by pressing the Up arrow key
when keyboard focus is in the command line input field.)

1.1. Getting started 3

luaexts Documentation, Release 1.0.0

4 Chapter 1. Overview

CHAPTER 2

API

The luaexts API is divided into two categories: 1) the exposed dbgeng COM API; and 2) the additional API that
luaexts provides, sometimes as higher level constructs on top of the dbgeng API like cppobj, and sometimes as
Lua-extension scaffolding like register_extension().

2.1 luaexts

2.1.1 Global functions

Most of the API provided by luaexts is scoped within an appropriately named global table. However, there are a
number of global functions that are accessible without prefixing.

print(anything)→ nil
Takes any number of arguments of any type, converts them to strings, and outputs those strings to the debugger’s
output window with no other formatting.

say(anything)→ nil
Exactly like print(), but appends a newline to whatever is output.

dml_print(anything)→ nil
Similar to print(), but outputs using debugger markup language (DML).

2.1.2 cppobj

cppobj provides a high level interface for working with C++ objects. The goal is to allow intuitive manipulation of
those objects through familiar syntax.

For example, here’s how to wrap an object named foo from the current scope, and print the value of its bar data
member:

local foo = cppobj.new('foo')
print(foo.bar)

Lua’s metatable feature is used to overload the indexing operation performed by foo.bar, in order to return a new
cppobj for the bar data member, which is then stringified. Stringification is overloaded to return a dbgeng “view” of
an object, i.e., the same string that the dbgeng COM API would return when asked to return an object as text. A native
Lua value can be retrieved for fundamental types by using cppobj.value().

Due to this overloading of the indexing operation, and the fact that instance methods are also implemented in Lua
by overloading indexing, most of the functions that operate on cppobj instances are instead implemented as class
functions that simply take the cppobj as a paramater.

5

https://msdn.microsoft.com/en-us/library/mt613235

luaexts Documentation, Release 1.0.0

Class Functions

Class functions are accessible through the global cppobj table. Many of them operate on a cppobj, and return informa-
tion about the wrapped C++ object.

cppobj.new(expr)→ cppobj
Creates a new cppobj, representing a C++ symbol.

Parameters expr (string) – C++ expression that evaluates to a symbol

Returns New cppobj representing the given symbol

cppobj.is_cppobj(value)→ boolean
Checks whether the given Lua value is a cppobj.

Parameters value – Lua value to check

Returns True if value is a cppobj, otherwise false

cppobj.value(obj)→ Lua value
For fundamental types (cppobj.kind() returns “base”, “enum”, or “pointer”), returns an object’s value as
an appropriately typed Lua value.

For array types, (cppobj.kind() returns “array), returns the memory offset of the array.

For other types, returns nil.

Parameters obj (cppobj) – Object whose value to return

cppobj.kind(obj)→ string
Returns the “kind” of a C++ object. The kind will be one of the following values:

•base: Fundamental type like bool, char, int, float, etc

•enum: Enum value

•pointer

•array

•class: Class instance

•function

•unknown: Some other, unrecognized kind

Parameters obj (cppobj) – Object whose kind to return

cppobj.type(obj)→ string
Returns an object’s type.

Parameters obj (cppobj) – Object whose type to return

cppobj.name(obj)→ string
Returns an object’s name, usually the variable or field name.

Parameters obj (cppobj) – Object whose name to return

cppobj.long_name(obj)→ string
Returns an object’s “long” name, which is a fully qualified expression that is valid for the current scope.

Parameters obj (cppobj) – Object whose long name to return

cppobj.offset(obj)→ integer
Returns an object’s memory offset in the debugging target’s memory.

6 Chapter 2. API

luaexts Documentation, Release 1.0.0

Parameters obj (cppobj) – Object whose offset to return

cppobj.size(obj)→ integer
Returns an object’s size.

Parameters obj (cppobj) – Object whose size to return

cppobj.type_id(obj)→ integer
Returns an object’s type id. This id is used in various dbgeng COM API functions.

Parameters obj (cppobj) – Object whose type id to return

cppobj.type_module(obj)→ integer
Returns the base memory offset of the module that the object’s type is from. This is effectively an id for the
module, and is used in various dbgeng COM API functions.

Parameters obj (cppobj) – Object whose module to return

cppobj.address_of(obj)→ cppobj
Returns a new cppobj representing a pointer to obj.

Parameters obj (cppobj) – Object to create a pointer to

cppobj.dereference(obj)→ cppobj
Given a cppobj representing a pointer, returns a new cppobj representing the pointee.

Parameters obj (cppobj) – Object to dereference

cppobj.bases(obj)→ array[cppobj]
Returns an array of cppobj instances that are the base class representations of obj.

Parameters obj (cppobj) – Object whose base class representations to return

cppobj.members(obj)→ array[cppobj]
Returns an array of cppobj instances that are the data members of obj.

Parameters obj (cppobj) – Object whose data members to return

Overloaded Operators

Overloaded operators comprise the remainder of the interactions with and between cppobj instances.

cppobj.__index(name)→ cppobj
The indexing operator (. or []) is overloaded to return a new cppobj representing a data member of the cppobj
being indexed.

Assuming foo is a formerly created cppobj, the following retrieves its bar data member as a cppobj:

local bar = foo.bar
-- equivalent:
local bar = foo['bar']

cppobj.__eq(cppobj)→ boolean
The equality operator (==) is overloaded to test C++ objects for equality, according to the following rules:

•arrays are treated as pointers

•pointers, base, and enum types are compared as numbers

•class types are considered equal if two instances represent the same type at the same memory offset

If the first operand is a cppobj, any other equality result will be false.

cppobj.__sub(cppobj)→ number

2.1. luaexts 7

luaexts Documentation, Release 1.0.0

cppobj.__sub(number)→ cppobj or number
The subtraction operator (-) is overloaded to perform subtraction with C++ objects, according to the following
rules:

•if the 1st operand is a cppobj pointer or array, and the 2nd operand is:

–cppobj pointer or array of the same type

*result is the scaled distance between the two memory locations, scaled by the object size

–cppobj base integral type

*result is a new pointer, offset by the given scaled distance

–Lua integer

*result is a new pointer, offset by the given scaled distance

•if the 1st operand is a cppobj base type or enum, and the 2nd operand is:

–cppobj base type or enum or Lua number; result is the difference of the two operands

•if the 1st operand is a Lua value, and the 2nd operand is:

–cppobj base type or enum or Lua number; result is the difference of the two operands

•otherwise, the result is nil

2.2 dbgeng

The dbgeng COM API is divided into several categories of COM objects, each relating to a specific set of functionality.
The provided Lua functions are intended to be a thin facade over the actual COM functions, and so are patterned very
closely after them.

2.2.1 dbgeng.control

The control functions are all accessible from the global dbgeng.control table, and represent the functions from the
IDebugControl interfaces of the dbgeng COM API.

Functions

dbgeng.control.add_assembly_options(options)→ boolean
Turns on some of the assembly and disassembly options. The given options will be added to the existing options.
See AddAssemblyOptions.

Parameters options (bitfield) – Combination of values from the asmopt table

Returns True if successful, otherwise false

Other

dbgeng.control.asmopt
Table containing assembly and disassembly options that affect how the debugger engine assembles and disas-
sembles processor instructions for the target. Contains the following values, which are intended to be combined
in a bitfield:

•VERBOSE: When set, additional information is included in the disassembly

8 Chapter 2. API

https://msdn.microsoft.com/en-us/library/ff551059
https://msdn.microsoft.com/en-us/library/ff550508
https://msdn.microsoft.com/en-us/library/ff551059
https://msdn.microsoft.com/en-us/library/ff537852

luaexts Documentation, Release 1.0.0

•NO_CODE_BYTES: When set, the raw bytes for an instruction are not included in the disassembly

•IGNORE_OUTPUT_WIDTH: When set, the debugger ignores the width of the output display when for-
matting instructions during dissamebly

•SOURCE_LINE_NUMBER: When set, each line of dissembly output is prefixed with the line number of
the source code provided by symbol information

See DEBUG_ASMOPT_XXX.

2.2.2 dbgeng.symbols

The symbols functions are accessible from the global dbgeng.symbols table, and represent the functions from the
IDebugSymbols interfaces of the dbgeng COM API.

Functions

Other

2.2.3 dbgeng.symbol-group

The symbol group functions are accessible from the global dbgeng.symbol_group table, and represent the functions
from the IDebugSymbolGroup interfaces of the dbgeng COM API.

Functions

Other

2.2.4 dbgeng.breakpoint

The breakpoint functions are accessible from the global dbgeng.breakpoint table, and represent the functions from the
IDebugBreakpoint interfaces of the dbgeng COM API.

Functions

Other

2.2. dbgeng 9

https://msdn.microsoft.com/en-us/library/ff541443
https://msdn.microsoft.com/en-us/library/ff550856
https://msdn.microsoft.com/en-us/library/ff551059
https://msdn.microsoft.com/en-us/library/ff550838
https://msdn.microsoft.com/en-us/library/ff551059
https://msdn.microsoft.com/en-us/library/ff549812
https://msdn.microsoft.com/en-us/library/ff551059

luaexts Documentation, Release 1.0.0

10 Chapter 2. API

CHAPTER 3

Indices and tables

• genindex

• modindex

• search

11

luaexts Documentation, Release 1.0.0

12 Chapter 3. Indices and tables

Python Module Index

c
cppobj, 5

d
dbgeng.breakpoint, 9
dbgeng.control, 8
dbgeng.symbol-group, 9
dbgeng.symbols, 9

13

luaexts Documentation, Release 1.0.0

14 Python Module Index

Index

Symbols
__eq() (cppobj.cppobj method), 7
__index() (cppobj.cppobj method), 7
__sub() (cppobj.cppobj method), 7

A
add_assembly_options() (in module dbgeng.control), 8
address_of() (in module cppobj), 7
asmopt (in module dbgeng.control), 8

B
bases() (in module cppobj), 7

C
cppobj (module), 5

D
dbgeng.breakpoint (module), 9
dbgeng.control (module), 8
dbgeng.symbol-group (module), 9
dbgeng.symbols (module), 9
dereference() (in module cppobj), 7
dml_print() (built-in function), 5

I
is_cppobj() (in module cppobj), 6

K
kind() (in module cppobj), 6

L
long_name() (in module cppobj), 6

M
members() (in module cppobj), 7

N
name() (in module cppobj), 6
new() (in module cppobj), 6

O
offset() (in module cppobj), 6

P
print() (built-in function), 5

S
say() (built-in function), 5
size() (in module cppobj), 7

T
type() (in module cppobj), 6
type_id() (in module cppobj), 7
type_module() (in module cppobj), 7

V
value() (in module cppobj), 6

15

	Overview
	Getting started

	API
	luaexts
	dbgeng

	Indices and tables
	Python Module Index

